某建材商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣,如果顾客购物总金额超过800元,超过800元部分享受一定的折扣优惠,按下表折扣分别累计计算:
某人在此商场购物总金额为x元,可以获得的折扣金额为y元.(1)写出y关于x的解析式. (2) 若y=30,求此人购物实际所付金额。
(本小题满分12分)已知两定点满足条件的点的轨迹是曲线,直线与曲线交于两点如果且曲线上存在点,使求
(本小题满分12分) 如图,在三棱锥A-BCD中,侧面ABD、 ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面是正三角形. (1)求证:AD^BC; (2)求二面角B-AC-D的大小; (3)在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若不存在,说明理由
(本小题满分12分) 已知定义在正实数集上的函数,,其中 设两曲线,有公共点,且在该点处的切线相同 (I)用表示,并求的最大值; (II)求证:()
(本小题满分12分) 甲、乙、丙三人按下面的规则进行乒乓球比赛: 第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立. 求:(I)打满3局比赛还未停止的概率; (II)比赛停止时已打局数的分别列与期望E.
(本小题满分10分) 已知的面积为,且满足,设和的夹角为 (I)求的取值范围; (II)求函数的最大值与最小值