已知椭圆过点,且离心率.(1)求椭圆C的方程;(2)已知过点的直线与该椭圆相交于A、B两点,试问:在直线上是否存在点P,使得是正三角形?若存在,求出点P的坐标;若不存在,请说明理由.
(本小题满分12分)己知函数.(1)讨论函数的单调区间;(2)设,当时,若对任意的都有,求实数的取值范围;(3)求证:.
(本小题满分12分).已知椭圆经过点,离心率.(1)求椭圆的方程;(2)不过原点的直线与椭圆交于两点,若的中点在抛物线上,求直线的斜率的取值范围.
(本小题满分12分)数列的前几项和为,满足,其中 (1)若为常数,证明:数列为等比数列;(2)若为变量,记数列的公比为,数列满足,求,试判定与的大小,并加以证明.
(本小题满分12分)营养学家指出,高中学生良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪.1kg食物含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费元;而1kg食物含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费元.为了满足营养专家指出的 日常饮食要求,同时使花费最低,需要同时食用食物和食物多少kg?
(本小题满分12分)已知函数.(1)求函数的最小正周期和单调递减区间;(2)记的内角的对应边分别为,且,,求的取值范围.