在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列. (1)求d,an; (2)若d<0,求|a1|+|a2|+|a3|+…+|an|.
矩形的中心在坐标原点,边与轴平行,=8,=6.分别是矩形四条边的中点,是线段的四等分点,是线段的四等分点.设直线与,与,与的交点依次为.(1)以为长轴,以为短轴的椭圆Q的方程;(2)根据条件可判定点都在(1)中的椭圆Q上,请以点L为例,给出证明(即证明点L在椭圆Q上).(3)设线段的(等分点从左向右依次为,线段的等分点从上向下依次为,那么直线与哪条直线的交点一定在椭圆Q上?(写出结果即可,此问不要求证明)
已知数列的前项的和为, ,求证:数列为等差数列的充要条件是.
如图在棱长为1的正方体中,M,N分别是线段和BD上的点,且AM=BN=(1)求||的最小值; (2)当||达到最小值时,与,是否都垂直,如果都垂直给出证明;如果不是都垂直,说明理由.
已知命题:方程无实根,命题:方程是焦点在轴上的椭圆.若与同时为假命题,求的取值范围.
设是函数的一个极值点.(1)求与的关系式(用表示),并求的单调递增区间;(2)设,若存在使得成立,求实数的取值范围.