平面直角坐标系 x O y 中,过椭圆 M : x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 右焦点的直线 x + y - 3 = 0 交 M 于 A , B 两点, P 为 A B 的中点,且 O P 的斜率为.(Ι)求 M 的方程; (Ⅱ) C , D 为 M 上的两点,若四边形 A C B D 的对角线 C D ⊥ A B ,求四边形面积的最大值
某市图书馆有三部电梯,每位乘客选择哪部电梯到阅览室的概率都是。现有5位乘客准备乘电梯到阅览室。 (1)求5位乘客选择乘同一部电梯到阅览室的概率; (2)若记5位乘客中乘第一部电梯到阅览室的人数为,求的分布列和数学期望
已知) (1)求的值; (2)求的值。
(本小题满分12分) 已知数列的前n项和满足:(为常数,且). (Ⅰ)求的通项公式; (Ⅱ)设,若数列为等比数列,求的值; (Ⅲ)在满足条件(Ⅱ)的情形下,设,数列的前n项和为.求证:.
(本小题满分12分)设上的两点,已知向量,若且椭圆的离心率e=,短轴长为,为坐标原点. (Ⅰ)求椭圆的方程; (Ⅱ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由
(本小题满分12分)已知=-,Î(0,e],其中是自然常数, (Ⅰ)当时, 求的单调区间和极值; (Ⅱ)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.