如图, C D 为 △ A B C 外接圆的切线, A B 的延长线交直线 C D 于点 D , E , F 分别为弦 A B 与弦 A C 上的点,且 B C · A E = D C · A F , B , E , F , C 四点共圆.
(Ⅰ)证明: C A 是 △ A B C 外接圆的直径; (Ⅱ)若 D B = B E = E A ,求过 B , E , F , C 四点的圆的面积与 △ A B C 外接圆面积的比值.
(本小题满分13分)已知函数.(Ⅰ)若x=1是的极值点,求a的值:(Ⅱ)当时,求证:.
(本小题满分13分)已知公比为的等比数列中,,前三项的和为.(Ⅰ)求数列的通项公式;(Ⅱ)若,设数列满足,,求使的的最小值.
(本小题满分14分)如图,在四棱锥中,底面是正方形,平面.点是线段的中点,点是线段上的动点.(Ⅰ)若是的中点,求证://平面;(Ⅱ)求证:; (Ⅲ)若,,当三棱锥的体积等于时,试判断点在边上的位置,并说明理由.
(本小题满分13分)设集合由满足下列两个条件的数列构成:① ②存在实数,使.(为正整数)(Ⅰ)在只有项的有限数列,中,其中,,,,,,,,,,试判断数列,是否为集合的元素;(Ⅱ)设是等差数列,是其前项和,,,证明数列;并求出的取值范围.
(本小题满分14分)已知椭圆的中心在坐标原点,长轴长为,离心率,过右焦点的直线交椭圆于,两点.(Ⅰ)求椭圆的方程;(Ⅱ)当直线的斜率为1时,求的面积;(Ⅲ)若以为邻边的平行四边形是矩形,求满足该条件的直线的方程.