已知首项为 3 2 的等比数列 { a n } 不是递减数列,其前 n 项和为 S n ( n ∈ N + ) ,且 S 3 + a 3 , S 5 + a 5 , S 4 + a 4 成等差数列. (1)求数列 { a n } 的通项公式; (2)设 T n = S n - 1 S n ( n ∈ N + ) ,求数列 { T n } 的最大项的值与最小项的值.
(本小题满分12分)已知数列{}的前n项和为,数列的前n项和为,为等差数列且各项均为正数, (1)求数列{}的通项公式; (2)若成等比数列,求
(本小题满分12分) 在中,若向量且与共线 (1)求角B; (2)若,求的值.
(本小题满分12分)某商场销售某种商品的经验表明,该商品每日的销售量y(单位一:千克)与销售价格x(单位:元/千克)满足关系式其中,a为常数,已知销售价格为5元/千克时,每日可售出该商品11千克。 (1)求a的值 (2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大。
(本小题满分12分)如图,在直三棱柱ABC-中,,D,E分别为BC,的中点,的中点,四边形是边长为6的正方形. (1)求证:平面; (2)求证:平面; (3)求二面角的余弦值.
(本小题满分12分)若函数在区间[]上的最大值为6, (1)求常数m的值 (2)作函数关于y轴的对称图象得函数的图象,再把的图象向右平移个单位得的图象,求函数的单调递减区间.