分已知函数为大于零的常数。(1)若函数内单调递增,求a的取值范围;(2)求函数在区间[1,2]上的最小值。
如图:在直角三角形ABC中,已知, D为AC的中点,E为BD的中点,AE的延长线交BC于F,将△ABD沿BD折起,二面角的大小记为. ⑴求证:平面平面BCD; ⑵当时,求的值; ⑶在⑵的条件下,求点C到平面的距离.
已知数列中, (1)求证:数列为等比数列; (2)设数列的前项的和为,若,求:正整数的最小值.
向量,设函数. (1)求的最小正周期与单调递减区间; (2)在中,分别是角的对边,若的面积为,求的值.
已知函数,试研究该函数的性质.
(本小题满分13分) 设数列的前n项和为,对一切,点()都在函数的图象上. (1) 求的值,猜想的表达式,并证明你的猜想; (2) 设为数列的前项积,是否存在实数、使得不等式对一切都成立?若存在,求出k的取值范围,若不存在,说明理由.