(13分)已知圆O:x2+y2=3的半径等于椭圆E:=1(a>b>0)的短半轴长,椭圆E的右焦点F在圆O内,且到直线l:y=x-的距离为-,点M是直线l与圆O的公共点,设直线l交椭圆E于不同的两点A(x1,y1),B(x2,y2).(1)求椭圆E的方程;(2)求证:|AF|-|BF|=|BM|-|AM|.
抛物线的顶点在原点,焦点是圆的圆心,(1)求抛物线的方程;(2)直线的斜率为,且过抛物线的焦点,若与抛物线、圆依次交于四个点,求。
求顶点在原点,焦点在轴上,且截直线所得的弦长为的抛物线的方程。
已知抛物线,过动点且斜率为的直线与该抛物线交于不同的两点,,(1)求的取值范围;(2)若线段的垂直平分线交轴于点,求的面积的最大值。
已知函数f(x)在(-1,1)上有定义,f()=-1,当且仅当0<x<1时f(x)<0,且对任意x、y∈(-1,1)都有f(x)+f(y)=f(),试证明: (1)f(x)为奇函数;(2)f(x)在(-1,1)上单调递减
作出下列函数的图像(1)y=|x-2|(x+1);(2).