如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是平行四边形,且AC⊥CD,PA=AD,M,Q分别是PD,BC的中点.(1)求证:MQ∥平面PAB;(2)若AN⊥PC,垂足为N,求证:MN⊥PD.
求与椭圆共焦点,且过点的椭圆方程。
已知椭圆经过点,,求椭圆的标准方程。
已知椭圆的两焦点为和,并且过点,求椭圆的方程。
将圆上的点的横坐标变为原来的2倍,纵坐标变为原来的一半,求所得曲线的方程。
是两个定点,以为一条底边作梯形,使的长为定值,与的长之和也是定值,则点的轨迹是什么曲线?