(本小题满分12分)已知点在椭圆C: 上,且椭圆C的离心率.(Ⅰ)求椭圆C的方程;(Ⅱ)过点作直线交椭圆C于点A.B.△ABQ的垂心为T,是否存在实数m ,使得垂心T在y轴上.若存在,求出实数m的取值范围;若不存在,请说明理由.
, (1)若命题T为真命题,求c的取值范围。 (2)若P或Q为真命题,P且Q为假命题,求c的取值范围.
已知集合A=,集合B=。 当=2时,求; 当时,若元素是的必要条件,求实数的取值范围。
(本小题满分12分)四棱锥中,底面为矩形,侧面底面,,,. (Ⅰ)证明:; (Ⅱ)设与平面所成的角为, 求二面角的余弦值.
(本小题满分12分)已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别是AC,AD上的动点,且==λ (0<λ<1). (1)求证:不论λ为何值,总有平面BEF⊥平面ABC; (2)当λ为何值时?平面BEF⊥平面ACD.
(本小题满分12分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°. (1)求证:PC⊥BC; (2)求点A到平面PBC的距离.