设两个非零向量e1和e2不共线.(1)如果=e1-e2,=3e1+2e2,=-8e1-2e2,求证:A、C、D三点共线;(2)如果=e1+e2,=2e1-3e2,=2e1-ke2,且A、C、D三点共线,求k的值.
观察下面由奇数组成的数阵,回答下列问题: ⑴求第六行的第一个数; ⑵求第20行的第一个数; ⑶求第20行的所有数的和.
首项为正数的数列 { a n } 满足 a n + 1 = 1 4 ( a n 2 + 3 ) , n ∈ N * . (Ⅰ)证明:若 a 1 为奇数,则对一切 n ≥ 2 , a n 都是奇数; (Ⅱ)若对一切 n ∈ N * ,都有 a n + 1 > a n ,求 a 1 的取值范围。
用分析法证明:
在平面直角坐标系O中,直线与抛物线相交于、两点。 (Ⅰ)求证:“如果直线过点,那么=”是真命题; (Ⅱ)写出(Ⅰ)中命题的逆命题,判断它是真命题还是假命题,并说明理由。
用三段论证明函数在(,1上是增函数。