已知二次函数f(x)=ax2+bx+c (a≠0)且满足f(-1)=0,对任意实数x,恒有f(x)-x≥0,并且当x∈(0,2)时,f(x)≤.(1)求f(1)的值;(2)证明:a>0,c>0;(3)当x∈[-1,1]时,函数g(x)=f(x)-mx (x∈R)是单调函数,求证:m≤0或m≥1.
设函数() (Ⅰ)若函数是定义在R上的偶函数,求a的值; (Ⅱ)若不等式对任意,恒成立,求实数m的取值范围.
在数列中,前n项和为,且. (Ⅰ)求数列的通项公式; (Ⅱ)设,数列前n项和为,求的取值范围.
某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照,,,,的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在,的数据). 频率分布直方图茎叶图 (Ⅰ)求样本容量n和频率分布直方图中x、y的值; (Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设表示所抽取的3名同学中得分在的学生个数,求的分布列及其数学期望.
已知. (Ⅰ)求的最大值及取得最大值时x的值; (Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若,,,求△ABC的面积.
(14分)己知函数f (x)=ex,xR (1)求 f (x)的反函数图象上点(1,0)处的切线方程。 (2)证明:曲线y=f(x)与曲线y=有唯一公共点; (3)设,比较与的大小,并说明理由。