在中,分别是角的对边,且.(1)若,求的长;(2)若,求的值.
已知不等式ax2+bx+c>0的解集为(1,t),记函数f(x)=ax2+(a-b)x-c.(1)求证:函数y=f(x)必有两个不同的零点;(2)若函数y=f(x)的两个零点分别为m,n,求|m-n|的取值范围;(3)是否存在这样的实数a,b,c及t使得函数y=f(x)在[-2,1]上的值域为[-6,12]?若存在,求出t的值及函数y=f(x)的解析式;若不存在,请说明理由.
设二次函数f(x)=ax2+bx+c,函数F(x)=f(x)-x的两个零点为m,n(m<n).(1)若m=-1,n=2,求不等式F(x)>0的解集;(2)若a>0,且0<x<m<n<,比较f(x)与m的大小.
设a≠0,对于函数f(x)=log3(ax2-x+a),(1)若函数f(x)的定义域为R,求实数a的取值范围;(2)若函数f(x)的值域为R,求实数a的取值范围.
已知关于x的不等式kx2-2x+6k<0(k≠0).(1)若不等式的解集为{x|x<-3或x>-2},求k的值;(2)若不等式的解集为{x|x∈R,x≠},求k的值;(3)若不等式的解集为R,求k的取值范围;(4)若不等式的解集为∅,求k的取值范围.
已知a,b,c∈{正实数},且a2+b2=c2,当n∈N,n>2时比较cn与an+bn的大小.