如图,在三棱柱中,底面,,,分别是棱,的中点,为棱上的一点,且//平面.(1)求的值;(2)求证:;(3)求二面角的余弦值.
已知是直线上的一点,是圆 上的两条切线,是切点,若四边形的最小面积是,求的值
若直线与圆交于两点,且 关于对称,求不等式组表示的平面区域的面积
已知圆被轴,轴截得的弦长都是,且圆心在直线上 设是动圆:的动点,切圆 于两点,求圆的方程及的最大值和最小值
已知为圆:的两条互相垂直的弦,垂足为 求四边形的面积的最大值,并且取得最大值时的方程
过圆:的圆心,作直线分别交轴正半轴于,△被圆分成四部分,若这四部分图形的面积满足,则满足条件直线有多少条