已知函数(1)若函数的图象切x轴于点(2,0),求a、b的值;(2)设函数的图象上任意一点的切线斜率为k,试求的充要条件;(3)若函数的图象上任意不同的两点的连线的斜率小于l,求证.
(本小题满分13分)已知椭圆()经过点,离心率为,动点(). (1)求椭圆的标准方程; (2)求以(为坐标原点)为直径且被直线截得的弦长为的圆的方程; (3)设是椭圆的右焦点,过点作的垂线与以为直径的圆交于点,证明线段的长为定值,并求出这个定值.
(本小题满分12分)如图,直三棱柱中,,,、分别为和上的点,且. (1)求证:当时,; (2)当为何值时,三棱锥的体积最小,并求出最小体积.
(本小题满分12分)已知等比数列的前项和为,,,且,,成等差数列. (1)求数列的通项公式; (2)设数列满足,求适合方程的正整数的值.
(本小题满分12分)已知函数 (1)求函数的最小正周期及在单调递增区间; (2)在中,A、B、C分别为三边所对的角,若,求的最大值.
(本小题满分12分)已知某校四个社团的学生人数分别为10,5,20,15.现为了了解社团活动开展情况,用分层抽样的方法从四个社团的学生当中随机抽取10名学生参加问卷调查. (Ⅰ)从四个社团中各抽取多少人? (Ⅱ)在社团所抽取的学生总数中,任取2个,求社团中各有1名学生的概率.