已知曲线C上的动点满足到定点的距离与到定点距离之比为.(1)求曲线的方程;(2)过点的直线与曲线交于两点,若,求直线的方程.
设各项均为正数的数列 a n 的前 n 项和为 S n ,满足 4 S n = a n + 1 2 - 4 n - 1 , n ∈ N * ,且 a 2 , a 5 , a 14 构成等比数列. (1) 证明: a 2 = 4 a 1 + 5 ; (2) 求数列 a n 的通项公式; (3) 证明:对一切正整数 n ,有 1 a 1 a 2 + 1 a 2 a 3 + . . . + 1 a n a n + 1 < 1 2 .
如图①,在边长为1的等边三角形 A B C 中, D , E 分别是 A B , A C 边上的点, A D = A E , F 是 B C 的中点, A F 与 D E 交于点 G ,将 △ A B F 沿 A F 折起,得到如图②所示的三棱锥 A - B C F ,其中 B C = 2 2 .
(1) 证明: D E / / 平面 B C F ; (2) 证明: C F ⊥ 平面 A B F ; (3) 当 A D = 2 3 时,求三棱锥 F - D E G 的体积 V F - D E G .
从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:
(1) 根据频数分布表计算苹果的重量在 [ 90 , 95 ) 的频率; (2) 用分层抽样的方法从重量在 [ 80 , 85 ) 和 [ 95 , 100 ) 的苹果中共抽取4个,其中重量在 [ 80 , 85 ) 的有几个? (3) 在(2)中抽出的4个苹果中,任取2个,求重量在 [ 80 , 85 ) 和 [ 95 , 100 ) 中各有1个的概率.
已知函数 f ( x ) = 2 cos ( x - π 12 ) , x ∈ R . (1) 求 f ( π 3 ) 的值; (2) 若 cos θ = 3 5 , θ ∈ ( 3 π 2 , 2 π ) ,求 f ( θ - π 6 ) .
设数列 a n : 1 , - 2 , - 2 , 3 , 3 , 3 , - 4 , - 4 , - 4 , - 4 , ⋯ , - 1 k - 1 k , ⋯ , - 1 k - 1 k ⏞ k 个 , ⋯ ,即当 k - 1 k 2 < n ≤ k k + 1 2 k ∈ N * 时,记 a n = - 1 k - 1 k .记 S n = a 1 + a 2 + ⋯ + a n n ∈ N * . 对于 l ∈ N * ,定义集合 p i = n S n 是 a n 的整数倍 , n ∈ N * , 1 ≤ n ≤ l . (1)求集合 P 11 中元素的个数; (2)求集合 P 2000 中元素的个数.