设各项均为正数的数列 a n 的前 n 项和为 S n ,满足 4 S n = a n + 1 2 - 4 n - 1 , n ∈ N * ,且 a 2 , a 5 , a 14 构成等比数列. (1) 证明: a 2 = 4 a 1 + 5 ; (2) 求数列 a n 的通项公式; (3) 证明:对一切正整数 n ,有 1 a 1 a 2 + 1 a 2 a 3 + . . . + 1 a n a n + 1 < 1 2 .
如图,直角三角形ABC中,∠B=,AB=1,BC=.点M,N分别在边AB和AC 上(M点和B点不重合),将△AMN沿MN翻折,△AMN变为△MN,使顶点落在边BC上(点和B点不重合).设∠AMN=.(1) 用表示线段的长度,并写出的取值范围;(2) 求线段长度的最小值.
已知椭圆的中心为坐标原点,短轴长为2,一条准线方程为l:.⑴ 求椭圆的标准方程;⑵ 设O为坐标原点,F是椭圆的右焦点,点M是直线l上的动点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值.
甲打靶射击,有4发子弹,其中有一发是空弹.(1)求空弹出现在第一枪的概率;(2)求空弹出现在前三枪的概率;(3)如果把空弹换成实弹,甲前三枪在靶上留下三个两两距离分别为3,4,5的弹孔,第四枪瞄准了三角形射击,第四个弹孔落在三角形内,求第四个弹孔与前三个弹孔的距离都超过1的概率(忽略弹孔大小).
..如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过C点。已知AB=3米,AD=2米。 (1)设(单位:米),要使花坛AMPN的面积大于32平方米,求的取值范围;
(2)若(单位:米),则当AM,AN的长度分别是多少时,花坛AMPN的面积最大?并求出最大面积。