如图①,在边长为1的等边三角形 A B C 中, D , E 分别是 A B , A C 边上的点, A D = A E , F 是 B C 的中点, A F 与 D E 交于点 G ,将 △ A B F 沿 A F 折起,得到如图②所示的三棱锥 A - B C F ,其中 B C = 2 2 .
(1) 证明: D E / / 平面 B C F ; (2) 证明: C F ⊥ 平面 A B F ; (3) 当 A D = 2 3 时,求三棱锥 F - D E G 的体积 V F - D E G .
如图,已知斜三棱柱ABC-A1B1C1的底面△ABC为直角三角形,∠C=90°,侧棱与底面成60°角,点B1在底面的射影D为BC的中点. 求证:AC⊥平面BCC1B1.
△ABC是正三角形,线段EA和DC都垂直于平面ABC.设EA=AB=2a,DC=a,且F为BE的中点,如图. (1)求证:DF∥平面ABC;(2)求证:AF⊥BD;(3)求平面BDF与平面ABC所成二面角的大小.
已知正方体ABCD-A1B1C1D1. (1)求证:平面A1BD∥平面B1D1C;(2)若E、F分别是AA1、CC1的中点,求证:平面EB1D1∥平面FBD.
如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形. (1)求证:DM∥平面APC;(2)求证:平面ABC⊥平面APC;(3)若BC=4,AB=20,求三棱锥D-BCM的体积.