一个盒子内装有九张卡片,每张卡片上面分别写着下列函数中的一个:,,,,,,, ,.每张卡片被取出的概率相等.(1)如果从盒子中一次随机取出两张卡片,并且将取出的两张卡片上的函数相乘得到一个新函数,求所得新函数是偶函数的概率;(2)现从盒子中一次随机取出一张卡片,每次取出的卡片都不放回盒子,若取出的卡片上写着的函数既有奇函数又有偶函数时则停止取出卡片,否则继续取出卡片.设取出卡片次才停止抽出卡片活动的概率.
(本小题满分12分) 在平面直角坐标系中,为坐标原点,三点满足 (Ⅰ)求证:三点共线; (Ⅱ)求的值; (Ⅲ)已知、,的最小值为,求实数的值.
(本小题满分12分) 已知是奇函数 (Ⅰ)求的值,并求该函数的定义域; (Ⅱ)根据(Ⅰ)的结果,判断在上的单调性,并给出证明.
( 本小题满分12分) 设函数图像的一条对称轴是直线 (Ⅰ)求; (Ⅱ)求函数的单调区间及最值;
(本小题满分12分) 已知函数是定义在实数集R上的奇函数,函数是区间上的减函数。 (I)求实数的值; (II)若对恒成立,求实数的取值范围; (III)讨论关于的方程的实根的个数