已知角A、B、C为△ABC的三个内角,其对边分别为a、b、c,若=(-cos,sin),=(cos,sin),a=2,且·=.(1)若△ABC的面积S=,求b+c的值.(2)求b+c的取值范围.
已知函数(1)求函数的最大值;(2)若,求的取值范围.(3)证明: +(n)
已知中心在原点,对称轴为坐标轴的椭圆C的一个焦点在抛物线的准线上,且椭圆C过点.(1)求椭圆C的方程;(2)点A为椭圆C的右顶点,过点作直线与椭圆C相交于E,F两点,直线AE,AF与直线分别交于不同的两点M,N,求的取值范围.
某市为控制大气PM2.5的浓度,环境部门规定:该市每年的大气主要污染物排放总量不能超过55万吨,否则将采取紧急限排措施.已知该市2013年的大气主要污染物排放总量为40万吨,通过技术改造和倡导绿色低碳生活等措施,此后每年的原大气主要污染物排放最比上一年的排放总量减少10%.同时,因为经济发展和人口增加等因素,每年又新增加大气主要污染物排放量万吨.(1)从2014年起,该市每年大气主要污染物排放总量(万吨)依次构成数列,求相邻两年主要污染物排放总量的关系式;(2)证明:数列是等比数列;(3)若该市始终不需要采取紧急限排措施,求m的取值范围.
如图,在四棱锥P-ABCD中,平面ABCD,AD//BC,AC,,点M在线段PD上.(1)求证:平面PAC;(2)若二面角M-AC-D的大小为,试确定点M的位置.
某学校组织了一次安全知识竞赛,现随机抽取20名学生的测试成绩,如下表所示(不低于90分的测试成绩称为“优秀成绩”):
(1)若从这20人中随机选取3人,求至多有1人是“优秀成绩”的概率;(2)以这20人的样本数据来估计整个学校的总体数据,若从该校全体学生中(人数很多)任选3人,记表示抽到“优秀成绩”学生的人数,求的分布列及数学期望.