已知函数 f x = x 2 + 2 x + a , x < 0 ln x , x > 0 ,其中 a 是实数.设 A x 1 , f x 1 , B x 2 , f x 2 为该函数图象上的两点,且 x 1 < x 2 . (Ⅰ)指出函数 f x 的单调区间; (Ⅱ)若函数 f x 的图象在点 A , B 处的切线互相垂直,且 x 2 < 0 ,证明: x 2 - x 1 ≥ 1 ; (Ⅲ)若函数 f x 的图象在点 A , B 处的切线重合,求 a 的取值范围.
已知数列的前n项和为,,且(),数列满足,,对任意,都有。(1)求数列、的通项公式;(2)令.①求证:;②若对任意的,不等式恒成立,试求实数λ的取值范围.
在△ABC中,∠A,∠B,∠C所对的边分别是a、b、c,不等式≥0对一切实数恒成立.(1)求cosC的取值范围;(2)当∠C取最大值,且△ABC的周长为6时,求△ABC面积的最大值,并指出面积取最大值时△ABC的形状.
已知数列的前n项和为,且(1)求数列的通项公式;(2)若满足,求数列的前n项和为;(3)设是数列的前n项和,求证:。
,,分别是△ABC的角,,的对边,,且.(1)求角的大小; (2)若,,求的值.
已知函数(a≠0)满足,为偶函数,且x=-2是函数的一个零点.又(>0).(1)求函数的解析式;(2)若关于x 的方程在上有解,求实数的取值范围;(3)令,求的单调区间.