在△ABC中,∠A,∠B,∠C所对的边分别是a、b、c,不等式≥0对一切实数恒成立.(1)求cosC的取值范围;(2)当∠C取最大值,且△ABC的周长为6时,求△ABC面积的最大值,并指出面积取最大值时△ABC的形状.
在长方体中,,,为中点.(Ⅰ)证明:;(Ⅱ)求与平面所成角的正弦值;(Ⅲ)在棱上是否存在一点,使得∥平面?若存在,求的长;若不存在,说明理由.
抽签方式决定出场顺序.通过预赛,选拔出甲、乙等五支队伍参加决赛.(Ⅰ)求决赛中甲、乙两支队伍恰好排在前两位的概率;(Ⅱ)若决赛中甲队和乙队之间间隔的队伍数记为,求的分布列和数学期望.
已知函数.(Ⅰ)求的定义域及最小正周期;(Ⅱ)求在区间上的最值.
如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线L交抛物线y=2x于M(x,y),N(x,y)两点. ⑴写出直线L的方程;⑵求xx与yy的值;⑶求证:OM⊥ON
已知函数f(x)=-x+3x+9x+a⑴求f(x)的单调递减区间;⑵若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值。