已知函数f(x)的定义域为{x| x ≠ kπ,k ∈ Z},且对于定义域内的任何x、y,有f(x-y) = 成立,且f(a) = 1(a为正常数),当0 < x < 2a时,f(x) > 0.(1)判断f(x)奇偶性;(2)证明f(x)为周期函数;(3)求f(x)在[2a,3a] 上的最小值和最大值.
如图,⊙为四边形的外接圆,且,是延长线上一点,直线与圆相切. 求证:.
如图,是圆的直径,是延长线上的一点,是圆的割线,过点作的垂线,交直线于点,交直线 于点,过点作圆的切线,切点为.
如图,是⊙的直径,是⊙的切线,与的延长线交于点,为切点.若,,的平分线与和⊙分别交于点、,求的值.
如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合. 已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2-14x+mn=0的两个根. (1)证明:C,B,D,E四点共圆; (2)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.
如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,EC=ED. (1)证明:CD∥AB; (2)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.