抛物线,直线过抛物线的焦点,交轴于点.(1)求证:;(2)过作抛物线的切线,切点为(异于原点),(ⅰ)是否恒成等差数列,请说明理由;(ⅱ)重心的轨迹是什么图形,请说明理由.
已知为数列的前项和,;数列满足:,,其前项和为(1) 求数列、的通项公式;(2) 若数列,设为数列的前项和,求使不等式对都成立的最大正整数的值.
已知:以点C (t, )(t∈R , t≠ 0)为圆心的圆与轴交于点O, A,与y轴交于点O, B,其中O为原点.(1) 求证:△OAB的面积为定值;(2) 设直线y = –2x+4与圆C交于点M, N,若OM = ON,求圆C的方程.
已知的顶点在椭圆上,在直线上,且. (1) 当边通过坐标原点时,求的长及的面积; (2) 当,且斜边的长最大时,求所在直线的方程.
已知函数;(1) 当时,判断在定义域上的单调性; (2) 若在上的最小值为2,求的值;
设平面上向量与不共线, (1) 证明向量与垂直(2) 当两个向量与的模相等,求角.