已知数列{an}的前n项和为Sn,且Sn=2an-1;数列{bn}满足bn-1-bn=bnbn-1(n≥2,n∈N*),b1=1.(1)求数列{an},{bn}的通项公式;(2)求数列的前n项和Tn.
已知直线经过点,倾斜角,(1)写出直线的参数方程;(2)设与圆相交于A、B两点,求点P到A、B两点的距离之积.
把边长为6的等边三角形铁皮剪去三个相同的四边形(如图阴影部分)后,用剩余部分做成一个无盖的正三棱柱形容器(不计接缝),设容器的高为,容积为。(1)写出函数的解析式,并求出函数的定义域;(2)求当为多少时,容器的容积最大?并求出最大容积.
已知实数满足,求证中至少有一个是负数.
已知若求实数的值.
已知函数f(x)=2asin(2x-)+b的定义域为[0,],函数最大值为1,最小值为-5,求a和b的值.