已知数列{an}的前n项和为Sn,且Sn=2an-1;数列{bn}满足bn-1-bn=bnbn-1(n≥2,n∈N*),b1=1.(1)求数列{an},{bn}的通项公式;(2)求数列的前n项和Tn.
已知函数 (Ⅰ)当时,求函数的定义域; (Ⅱ)当函数的定义域为R时,求实数的取值范围.
在直角坐标系中,以O为极点,轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为,曲线的参数方程为,(为参数,)。 (Ⅰ)求C1的直角坐标方程; (Ⅱ)当C1与C2有两个公共点时,求实数的取值范围.
已知,若矩阵所对应的变换把直线变换为它自身。 (Ⅰ)求矩阵A; (Ⅱ)求矩阵A的逆矩阵。
已知函数 (Ⅰ)求处的切线方程; (Ⅱ)若不等式恒成立,求的取值范围; (Ⅲ)数列,数列满足的前项和为,求证:
如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求在的延长线上,在的延长线上,且对角线过点.已知米,米。 (1)设(单位:米),要使花坛的面积大于32平方米,求的取值范围; (2)若(单位:米),则当,的长度分别是多少时,花坛的面积最大?并求出最大面积.