如图,四面体ABCD中,△ABC与△DBC都是边长为4的正三角形.(1)求证:BC⊥AD;(2)试问该四面体的体积是否存在最大值?若存在,求出这个最大值及此时棱长AD的大小;若不存在,请说明理由.
已知的三个内角A、B、C所对的边分别为,向量,且. (Ⅰ)求角A的大小; (Ⅱ)若,试判断取得最大值时形状
已知函数,其定义域为(). (Ⅰ)试确定的取值范围,使得函数在上为单调函数; (Ⅱ)求证:对于任意的,总存在,满足,并确定这样的的个数.
已知椭圆的左、右焦点分别为,, 点是椭圆的一个顶点,△是等腰直角三角形. (Ⅰ)求椭圆的方程; (Ⅱ)过点分别作直线,交椭圆于,两点,设两直线的斜率分别为,,且,证明:直线过定点().
设曲线在点处的切线与y轴交于点. (1)求数列的通项公式; (2)设数列的前项和为,求.
某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米. (1)分别写出用表示和用表示的函数关系式(写出函数定义域); (2)怎样设计能使S取得最大值,最大值为多少?