如图所示的两个同心圆盘均被等分(且),在相重叠的扇形格中依次同时填上,内圆盘可绕圆心旋转,每次可旋转一个扇形格,当内圆盘旋转到某一位置时,定义所有重叠扇形格中两数之积的和为此位置的“旋转和”.(1)求个不同位置的“旋转和”的和;(2)当为偶数时,求个不同位置的“旋转和”的最小值;(3)设,在如图所示的初始位置将任意对重叠的扇形格中的两数均改写为0,证明:当时,通过旋转,总存在一个位置,任意重叠的扇形格中两数不同时为0.
(本小题满分12分) 已知圆的方程是:,其中,且. (1)求圆心的轨迹方程。 (2)求恒与圆相切的直线的方程;
(本小题满分12分) 求圆心在直线上,且与直线相切于的圆的方程.
(本小题满分10分) 已知直线过点,且与两坐标轴围成的三角形面积为5,求该直线方程。
(本小题满分10分)解不等式
(本小题满分14分) 已知函数,数列满足,;数列满足,,其中为数列前几项和, (1)求数列和数列的通项公式; (2)设,证明.