已知函数,,其中,为自然对数的底数.(1)若在处的切线与直线垂直,求的值;(2)求在上的最小值;(3)试探究能否存在区间,使得和在区间上具有相同的单调性?若能存在,说明区间的特点,并指出和在区间上的单调性;若不能存在,请说明理由.
如图所示的多面体中,是菱形,是矩形,面,.(1)求证:.(2)若
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
(1)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?(2)在上述抽取的6人中选2人,求恰有一名女生的概率.
设函数(1)求函数的值域和函数的单调递增区间; (2)当,且时,求的值.
已知关于的函数,其导函数为.记函数 在区间上的最大值为.(1) 如果函数在处有极值,试确定的值;(2) 若,证明对任意的,都有;(3) 若对任意的恒成立,试求的最大值.
椭圆的离心率为,其左焦点到点的距离为.(1) 求椭圆的标准方程;(2) 若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.