如图,是直角梯形,∠=90°,∥,=1,=2,又=1,∠=120°,⊥,直线与直线所成的角为60°.(1)求二面角的的余弦值;(2)求点到面的距离.
设数列共有项,记该数列前项中的最大项为,该数列后项中的最小项为,.(1)若数列的通项公式为,求数列的通项公式;(2)若数列满足,,求数列的通项公式;(3)试构造一个数列,满足,其中是公差不为零的等差数列,是等比数列,使得对于任意给定的正整数,数列都是单调递增的,并说明理由.
已知函数在处的切线方程为.(1)求的值;(2)若对任意的,都有成立,求的取值范围;(3)若函数的两个零点为,试判断的正负,并说明理由.
如图,在平面直角坐标系中,设点是椭圆上一点,从原点向圆作两条切线分别与椭圆交于点,直线的斜率分别记为.(1)若圆与轴相切于椭圆的右焦点,求圆的方程;(2)若.①求证:;②求的最大值
如图所示,是两个垃圾中转站,在的正东方向千米处,的南面为居民生活区. 为了妥善处理生活垃圾,政府决定在的北面建一个垃圾发电厂. 垃圾发电厂的选址拟满足以下两个要求(可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点到直线的距离要尽可能大). 现估测得两个中转站每天集中的生活垃圾量分别约为吨和吨,问垃圾发电厂该如何选址才能同时满足上述要求?
如图,已知直三棱柱的侧面是正方形,点是侧面的中心,,是棱的中点.(1)求证:平面;(2)求证:平面平面.