设数列的前项和,数列满足.(1)求数列的通项公式;(2)求数列的前项和.
根据下列条件,求直线的方程:(1)已知直线过点P(-2,2)且与两坐标轴所围成的三角形面积为1;(2)过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0.
是否存在a、b、c使得等式1·22+2·32+…+n(n+1)2=(an2+bn+c) 对于一切正整数n都成立?证明你的结论.
如图,在三棱锥中,底面,点,分别在棱的中点,求与平面所成的角的正弦值的大小;
已知的展开式中第五项的系数与第三项的系数的比是10∶1.求展开式中含的项.
已知P是椭圆上的任意一点,F1、F2是它的两个焦点,O为坐标原点,=+,求动点Q的轨迹方程.