口袋中有n(n∈N*)个白球,3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X,若P(X=2)=求:(1)n的值;(2)X的概率分布与数学期望.
某公司销售A、B、C三款手机,每款手机都有经济型和豪华型两种型号,据统计12月份共销售1000部手机(具体销售情况见下表)
已知在销售1000部手机中,经济型B款手机销售的频率是0.21. (1)现用分层抽样的方法在A、B、C三款手机中抽取50部,求应在C款手机中抽取多少部? (2)若y136,z133,求C款手机中经济型比豪华型多的概率.
在△ABC中,a、b、c分别为角A、B、C所对的边,且 (2b+c)cosA+acosC =0 (1)求角A的大小: (2)求的最大值,并求取得最大值时角 B.C的大小.
已知函数g(x)="aln" x·f(x)=x3 +x2+bx (1)若f(x)在区间[1,2]上不是单调函数,求实数b的范围; (2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围; (3)当b=0时,设F(x)=,对任意给定的正实数a,曲线y=F(x)上是否存在两点P,Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在y轴上?请说明理由.
已知椭圆C:=1(a>0,b>0)的离心率与双曲线=1的一条渐近线的斜率相等以原点为圆心,椭圆的短半轴长为半径的圆与直线sin·x+cos·y-l=0相切(为常数). (1)求椭圆C的方程; (2)若过点M(3,0)的直线与椭圆C相交TA,B两点,设P为椭圆上一点,且满足(O为坐标原点),当时,求实数t取值范围.
已知数列{an}满足a1>0,an+1=2-,。 (1)若a1,a2,a3成等比数列,求a1的值; (2)是否存在a1,使数列{an}为等差数列?若存在,求出所有这样的a1,若不存在,说明理由。