已知曲线的方程为,过原点作斜率为的直线和曲线相交,另一个交点记为,过作斜率为的直线与曲线相交,另一个交点记为,过作斜率为的直线与曲线相交,另一个交点记为,如此下去,一般地,过点作斜率为的直线与曲线相交,另一个交点记为,设点().(1)指出,并求与的关系式();(2)求()的通项公式,并指出点列,,,向哪一点无限接近?说明理由;(3)令,数列的前项和为,试比较与的大小,并证明你的结论.
已知椭圆C的中心在原点,焦点在轴上,焦距为2,离心率为 (1)求椭圆C的方程; (2)设直线经过点(0,1),且与椭圆C交于两点,若,求直线的方程.
如图,四边形与均为菱形,设与相交于点,若,且. (1)求证:; (2)求二面角的余弦值.
已知数列、满足,且,其中为数列的前项和,又,对任意都成立。 (1)求数列、的通项公式; (2)求数列的前项和
在中,分别是内角的对边,且,若 (1)求的大小; (2)设为的面积, 求的最大值及此时的值.
已知椭圆的中心在原点,焦点在轴上,离心率为,长轴长为,直线交椭圆于不同的两点. (1)求椭圆的方程; (2)求的取值范围; (3)若直线不经过椭圆上的点,求证:直线的斜率互为相反数.