已知曲线的方程为,过原点作斜率为的直线和曲线相交,另一个交点记为,过作斜率为的直线与曲线相交,另一个交点记为,过作斜率为的直线与曲线相交,另一个交点记为,如此下去,一般地,过点作斜率为的直线与曲线相交,另一个交点记为,设点().(1)指出,并求与的关系式();(2)求()的通项公式,并指出点列,, ,, 向哪一点无限接近?说明理由;(3)令,数列的前项和为,设,求所有可能的乘积的和.
在平面直角坐标系中,直线l与抛物线相交于不同的两点A,B. (I)如果直线l过抛物线的焦点,求的值; (II)如果,证明直线l必过一定点,并求出该定点坐标.
已知等差数列满足,. (I)求数列的通项公式; (II)求数列的前n项和.
在中,内角所对的边长分别为,,,. 求sinC和b的值.
已知函数,. (I)讨论函数的单调性; (Ⅱ)当时,≤恒成立,求的取值范围.
如图,在轴上方有一段曲线弧,其端点、在轴上(但不属于),对上任一点及点,,满足:.直线,分别交直线于,两点. (Ⅰ)求曲线弧的方程; (Ⅱ)求的最小值(用表示);