某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润y1与投资金额x的函数关系为y1=18-,B产品的利润y2与投资金额x的函数关系为y2=(注:利润与投资金额单位:万元).(1)该公司已有100万元资金,并全部投入A,B两种产品中,其中x万元资金投入A产品,试把A,B两种产品利润总和表示为x的函数,并写出定义域;(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?
如图,在四棱锥中,底面是矩形,平面,,.以的中点为球心、为直径的球面切于点. (1)求证:PD⊥平面; (2)求直线与平面所成的角的正弦值; (3)求点到平面的距离.
如图,在正四面体中,分别是棱的中点. (1)求证:四边形是平行四边形; (2)求证:平面; (3)求证:平面.
(1)焦点在x轴上的椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程. (2)已知双曲线的一条渐近线方程是,并经过点,求此双曲线的标准方程.
在平面直角坐标系中,有三个点的坐标分别是. (1)证明:A,B,C三点不共线; (2)求过A,B的中点且与直线平行的直线方程; (3)设过C且与AB所在的直线垂直的直线为,求与两坐标轴围成的三角形的面积.
设直线与直线交于点. (1)当直线过点,且与直线垂直时,求直线的方程; (2)当直线过点,且坐标原点到直线的距离为时,求直线的方程.