已知椭圆的离心率为,以原点为圆心、椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的方程;(2)设,过点作直线(不与轴重合)交椭圆于、两点,连结、分别交直线于、两点,试探究直线、的斜率之积是否为定值,若为定值,请求出;若不为定值,请说明理由.
从集合中任取三个元素构成三元有序数组,规定(1)从所有三元有序数组中任选一个,求它的所有元素之和等于10的概率;(2)定义三元有序数组的“项标距离”为,(其中,从所有三元有序数组中任选一个,求它的“项标距离”为偶数的概率;
设数列是等差数列,是各项均为正数的等比数列,且(1)求数列的通项公式;(2)若为数列的前项和,求.
设是锐角三角形,分别是内角A、B、C所对边长,并且.(1)求角;(2)若,且,求边.
已知函数(1)讨论函数的单调性;(2)若函数的图象在点处的切线的倾斜角为,对于任意的 ,函数在区间 上总不是单调函数,求实数的取值范围;(3)求证
已知两点及,点在以、为焦点的椭圆上,且、、 构成等差数列.(1)求椭圆的方程;(2)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且,. 求四边形面积的最大值.