小明家订了一份报纸,寒假期间他收集了每天报纸送达时间的数据,并绘制成频率分布直方图,如图所示.(1)根据图中的数据信息,求出众数和中位数(精确到整数分钟);(2)小明的父亲上班离家的时间在上午之间,而送报人每天在时刻前后半小时内把报纸送达(每个时间点送达的可能性相等),求小明的父亲在上班离家前能收到报纸(称为事件)的概率.
(本小题满分12分)如图,抛物线的顶点O在坐标原点,焦点在y轴的负半轴上,过点M(0,-2)作直线l与抛物线相交于A,B两点,且满足=(-4,-12).(1)求直线l和抛物线的方程;(2)当抛物线上一动点P在点A和B之间运动时,求ΔABP面积的最大值.
(本小题满分12分)已知函数f(x)=.(1)若f(x)在上是增函数,求实数a的取值范围;(2)若x=3是f(x)的极值点,求f(x)在上的最小值和最大值。
(本小题满分12分)如图,在正三棱柱ABC-A1B1C1中,AB=4,AA1,点D是BC的中点,点E在AC上,且DE⊥A1E. (1)证明:平面A1DE⊥平面ACC1A1;(2)求直线AD和平面A1DE所成角的正弦值。
(本小题满分12分)已知f(x)=奇函数,且。(1)求实数p , q的值。(2)判断函数f(x)在上的单调性,并证明。
(本小题满分12分)已知集合 ,,如果,则这样的实数x是否存在?若存在,求出x;若不存在,说明理由。