(本小题满分12分)已知集合 ,,如果,则这样的实数x是否存在?若存在,求出x;若不存在,说明理由。
(本小题满分10分)选修4—4:坐标系与参数方程 已知曲线,直线(t为参数). (1)写出曲线C的参数方程,直线的普通方程; (2)过曲线C上任意一点P作与夹角为30°的直线,交于点A,求|PA|的最大值与最小值.
如图,内接于圆,平分交圆于点,过点作圆的切线交直线于点. (1)求证:; (2)求证:.
(本小题满分12分) 已知函数为常数. (1)当时,求的单调区间; (2)当时,若在区间上的最大值为,求的值; (3)当时,试推断方程=是否有实数解.
(本小题满分12分)已知椭圆的两个焦点分别为,离心率为,过的直线与椭圆交于两点,且的周长为8. (1)求椭圆C的方程; (2)过原点O的两条互相垂直的射线与椭圆C分别交于A,B两点,证明:点O到直线AB的距离为定值,并求出这个定值.
(本小题满分12分)如图,已知棱柱的底面是菱形,且面,,=1,为棱的中点,为线段的中点. (1)求证:面; (2)试判断直线MF与平面的位置关系,并证明你的结论; (3)求三棱锥的体积.