(本小题满分14分)某工厂在甲、乙两地的两个分厂各生产某种机器12台和6台. 现销售给A地10台,B地8台. 已知从甲地调运1台至A地、B地的运费分别为400元和800元,从乙地调运1台至A地、B地的费用分别为300元和500元.(1)设从甲地调运x台至A地,求总费用y关于台数x的函数解析式;(2)若总运费不超过9000元,问共有几种调运方案;(3)求出总运费最低的调运方案及最低的费用.
(本小题满分12分) 在△ABC中,已知,,B=45°求及c 。
(13分) 已知函数。 (I)当时,求曲线在点处的切线方程; (Ⅱ)当函数在区间上的最小值为时,求实数的值; (Ⅲ)若函数与的图象有三个不同的交点,求实数的取值范围。
. (12分) 已知函数f(x)= ,(p≠0)是奇函数. (1)求m的值. (2)若p>1,当x∈[1,2]时,求f(x)的最大值和最小值.
(12分) 已知a、b、c是互不相等的非零实数. 求证:三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.
设复数,试求实数m取何值时 (1)Z是实数; (2)Z是纯虚数; (3)Z对应的点位于复平面的第一象限