(本小题满分12分)如图,抛物线的顶点O在坐标原点,焦点在y轴的负半轴上,过点M(0,-2)作直线l与抛物线相交于A,B两点,且满足=(-4,-12).(1)求直线l和抛物线的方程;(2)当抛物线上一动点P在点A和B之间运动时,求ΔABP面积的最大值.
如图,在平面直角坐标系xOy中,椭圆C的中心在坐标原点O,右焦点为F.若C的右准线l的方程为x=4,离心率e=. (1)求椭圆C的标准方程; (2)设点P为准线l上一动点,且在x轴上方.圆M经过O、F、P三点,求当圆心M到x轴的距离最小时圆M的方程.
直线l过点(-4,0)且与圆(x+1)2+(y-2)2=25交于A,B两点,如果AB=8,求直线l的方程.
自点A(-3,3)发出的光线l射到x轴上,被x轴反射,反射光线所在的直线与圆C:x2+y2-4x-4y+7=0相切.求: (1)光线l和反射光线所在的直线方程; (2)光线自A到切点所经过的路程.
求半径为4,与圆x2+y2-4x-2y-4=0相切,且和直线y=0相切的圆的方程.
已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0). (1)若l1与圆相切,求l1的方程; (2)若l1与圆相交于P、Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,判断AM·AN是否为定值?若是,则求出定值;若不是,请说明理由.