已知△AOB的一个顶点为抛物线y2=2x的顶点O,A、B两点都在抛物线上,且∠AOB=90°.(1)证明直线AB必过一定点;(2)求△AOB面积的最小值.
(本题满分14分)设为函数两个不同零点.(Ⅰ)若,且对任意,都有,求;(Ⅱ)若,则关于的方程是否存在负实根?若存在,求出该负根的取值范围,若不存在,请说明理由;(Ⅲ)若,,且当时,的最大值为,求的最小值.
设各项均为正数的等比数列的公比为,表示不超过实数的最大整数(如),设,数列的前项和为,的前项和为.(Ⅰ)若,求及;(Ⅱ)若对于任意不超过2015的正整数,都有 ,证明:.
(本题满分15分)已知椭圆:过点,离心率为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设分别为椭圆的左、右焦点,过的直线与椭圆交于不同两点,记的内切圆的面积为,求当取最大值时直线的方程,并求出最大值.
如图,在四棱锥中,底面是平行四边形,平面,点分别为的中点,且,.(Ⅰ)证明:平面; (Ⅱ)设直线与平面所成角为,当在内变化时,求二面角的取值范围.
已知函数 .(Ⅰ)求函数的单调增区间; (Ⅱ)在中,内角所对边分别为,,若对任意的不等式恒成立,求面积的最大值.