从集合中任取三个元素构成三元有序数组,规定(1)从所有三元有序数组中任选一个,求它的所有元素之和等于10的概率;(2)定义三元有序数组的“项标距离”为,(其中,从所有三元有序数组中任选一个,求它的“项标距离”为偶数的概率;
已知函数的图象过点,且它在处的切线方程为.(1) 求函数的解析式;(2) 若对任意,不等式恒成立,求实数的取值范围.
当为正整数时,区间,表示函数在上函数值取整数值的个数,当时,记.当,表示把“四舍五入”到个位的近似值,如当为正整数时,表示满足的正整数的个数.(1)判断在区间的单调性;(2)求;(3)当为正整数时,集合中所有元素之和为,记求证:
已知函数,(1)求;(2)令,求证:
已知,(1)若的取值范围;(2)若的图象与的图象恰有3个交点?若存在求出的取值范围;若不存在,试说明理由.
设直线. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有. 则称直线l为曲线S的“上夹线”.(1) 类比“上夹线”的定义,给出“下夹线”的定义;(2) 已知函数取得极小值,求a,b的值;(3) 证明:直线是(2)中曲线的“上夹线”。