一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4.从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(1)求取出的4张卡片中, 含有编号为3的卡片的概率.(2)再取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X的分布列和数学期望.
已知数列与,若且对任意正整数满足 数列的前项和.(1)求数列的通项公式;(2)求数列的前项和
年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人, 他们的健康状况如下表:
其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,-1代表“生活不能自理”.(1)随机访问该小区一位80岁以下的老龄人,该老人生活能够自理的概率是多少?(2)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.求被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率.
在直角坐标系中,圆的参数方程为参数).以为极点,轴的非负半轴为极轴建立极坐标系.(1)求圆的极坐标方程;(2)直线的极坐标方程是,射线与圆C的交点为、,与直线的交点为,求线段的长.
在一次数学考试中,第22题和第23题为选做题.规定每位考生必须且只须在其中选做一题.设某4名考生选做每一道题的概率均为 . (1)求其中甲、乙两名学生选做同一道题的概率;(2)设这4名考生中选做第22题的学生个数为,求的概率分布列及数学期望.
在△中,角的对边分别为.已知,,且 (1)求角的大小;(2)求△的面积.