如图, 已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.(1)求证: EC⊥CD ;(2)求证:AG∥平面BDE;(3)求:几何体EG-ABCD的体积.
(本小题满分14分)已知定义在实数集上的函数fn(x)=xn,n∈N*,其导函数记为,且满足,a,x1,x2为常数,x1≠x2.(1)试求a的值;(2)记函数,x∈(0,e],若F(x)的最小值为6,求实数b的值;(3)对于(2)中的b,设函数,A(x1,y1),B(x2,y2)(x1<x2)是函数g(x)图象上两点,若,试判断x0,x1,x2的大小,并加以证明.
(本小题满分14分)已知函数 ,.(1)当时,求曲线在点(3,)处的切线方程;(2)当函数在上有唯一的零点时,求实数的取值范围.
(本小题满分14分)某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为平方米,且高度不低于米.记防洪堤横断面的腰长为(米),外周长(梯形的上底线段与两腰长的和)为(米).⑴求关于的函数关系式,并指出其定义域;⑵要使防洪堤横断面的外周长不超过米,则其腰长应在什么范围内?⑶当防洪堤的腰长为多少米时,堤的上面与两侧面的水泥用料最省(即断面的外周长最小)?求此时外周长的值.
(本小题满分14分)在平面直角坐标系中,为坐标原点,已知向量,又点.(1)若,且,求向量;(2)若向量与向量共线,当时,且取最大值为4时,求.
(本小题满分12分)已知,,且// .设函数.(1)求函数的解析式; (2)若在锐角中,,边,求周长的最大值.