如图, 已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.(1)求证: EC⊥CD ;(2)求证:AG∥平面BDE;(3)求:几何体EG-ABCD的体积.
已知函数是定义在上的偶函数,且时,,函数的值域为集合.(I)求的值;(II)设函数的定义域为集合,若,求实数的取值范围.
已知,设命题P: ;命题Q:函数f(x)=3x2+2mx+m+有两个不同的零点.求使命题“P或Q”为真命题的实数的取值范围.
已知集合(I)当=3时,求;(Ⅱ)若,求实数的值.
设函数f(θ)=sinθ+cosθ,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(1)若点P的坐标为,求f(θ)的值;(2)若点P(x,y)为平面区域Ω:,上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.
已知p:∀x∈R,2x>m(x2+1),q:∃x0∈R,+2x0-m-1=0,且p∧q为真,求实数m的取值范围.