设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.(1)求a1的值;(2)求数列{an}的通项公式.
设函数y=f(x),且lg(lgy)=lg3x+lg(3-x). (1)求f(x)的表达式及定义域; (2)求f(x)的值域.
已知f(x)=1+log2x(1≤x≤4),求函数g(x)=[f(x)]2+f(x2)的最大值和最小值.
已知lgx+lgy=2lg(x-2y),求的值.
求函数f(x)=log2+log2(x-1)+log2(p-x)的值域.
已知f(x)=lg(ax-bx)(a>1>b>0). (1)求y=f(x)的定义域; (2)在函数图象上是否存在不同两点,使过两点的直线平行于x轴?