设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.(1)求a1的值;(2)求数列{an}的通项公式.
已知数列 的前项和是且 (Ⅰ)求数列的通项公式; (Ⅱ)记,求数列的前项的和.
已知函数的定义域为. ⑴求的取值范围; ⑵当取最大值时,解关于的不等式.
已知在平面直角坐标系中,圆的参数方程为(为参数),以为极轴建立极坐标系,直线的极坐标方程为. ⑴写出直线的直角坐标方程和圆的普通方程; ⑵求圆截直线所得的弦长.
如图所示,自⊙外一点引切线与⊙切于点,为的中点,过引割线交⊙于两点. 求证:
已知函数, ⑴求证函数在上的单调递增; ⑵函数有三个零点,求的值; ⑶对恒成立,求a的取值范围。