(本小题满分12分)某家电生产企业市场营销部对本厂生产的某种电器进行了市场调查,发现每台的销售利润与该电器的无故障使用时间(单位:年)有关.若,则销售利润为元;若,则销售利润为元;若,则销售利润为元,设每台该种电器的无故障使用时间,,这三种情况发生的概率分别是,又知是方程的两个根,且.(1)求的值;(2)记表示销售两台该种电器的销售利润总和,求的分布列及期望.
已知函数,设曲线在点处的切线与轴的交点为,其中为正实数. (1)用表示; (2),若,试证明数列为等比数列,并求数列的通项公式; (3)若数列的前项和,记数列的前项和,求.
某种商品原来每件售价为25元,年销售8万件. (1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元? (2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到元.公司拟投入万元作为技改费用,投入50万元作为固定宣传费用,投入万元作为浮动宣传费用.试问:当该商品明年的销售量至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.
如图,在四棱锥中,底面为直角梯形,,垂直于底面,分别为的中点. (1)求证:; (2)求点到平面的距离.
设向量,函数. (1)求函数的单调递增区间; (2)求使不等式成立的的取值集合.
已知函数. (1)当时,求的极值;(2)当时,讨论的单调性; (3)若对任意的恒有成立,求实数的取值范围.