甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是,假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分、对方得1分.求乙队得分X的分布列.
(本小题满分12分)已知函数的最小正周期为. (Ⅰ)求;(Ⅱ)当时,求函数的值域.
函数的定义域为(0,1](为实数).⑴当时,求函数的值域;⑵若函数在定义域上是减函数,求的取值范围;⑶求函数在x∈(0,1]上的最大值及最小值,并求出函数取最值时的值.
已知命题:方程在[-1,1]上有解;命题:只有一个实数满足不等式,若命题“p或q”是假命题,求实数a的取值范围.
已知常数。
二次函数f(x)满足f (x+1)-f (x)=2x且f (0)=1.⑴求f (x)的解析式;⑵在区间[-1,1]上,y=f (x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.