已知数列满足(为常数,)(1)当时,求;(2)当时,求的值;(3)问:使恒成立的常数是否存在?并证明你的结论.
如图,在四棱锥中,底面是边长为的正方形,侧面,且,若、分别为、的中点. (1)求证:∥平面; (2)求证:平面平面. (3)求四棱锥的体积.
(12分)某校为了解学生的学科学习兴趣,对初高中学生做了一个喜欢数学和喜欢语文的抽样调查,随机抽取了名学生,相关的数据如下表所示:
(1) 、用分层抽样的方法从喜欢语文的学生中随机抽取名,高中学生应该抽取几名? (2) 、在(1)中抽取的名学生中任取名,求恰有名初中学生的概率.
(12分)设 (1)求函数的最小正周期和单调递增区间 (2)当
选修4-5:不等式选讲(本小题满分10分) 设函数,其中。 (Ⅰ)当时,求不等式的解集; (Ⅱ)若不等式的解集为,求a的值。
选修4-4:坐标系与参数方程(本小题满分10分) 已知极坐标的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长度单位相同.直线的极坐标方程为:,点,参数. (Ⅰ)求点轨迹的直角坐标方程; (Ⅱ)求点到直线距离的最大值.