四面体 A B C D 及其三视图如图所示,平行于棱 A D , B C 的平面分别交四面体的棱 A B , B D , D C , C A 于点 E , F , G , H . (1)求四面体 A B C D 的体积; (2)证明:四边形 E F G H 是矩形.
和的极坐标方程分别为. (Ⅰ)把和的极坐标方程化为直角坐标方程; (Ⅱ)求经过,交点的直线的直角坐标方程.
把下列参数方程化为普通方程,并说明它们各表示什么曲线: ⑴(为参数);⑵(为参数)
已知实数a满足0<a≤2,a≠1,设函数f (x)=x3-x2+ax. (Ⅰ) 当a=2时,求f (x)的极小值; (Ⅱ)若函数g(x)=x3+bx2-(2b+4)x+ln x (b∈R)的极小值点与f (x)的极小值点相同. 求证:g(x)的极大值小于等于.
过点作直线与抛物线相交于两点,圆 (Ⅰ)若抛物线在点处的切线恰好与圆相切,求直线的方程; (Ⅱ)过点分别作圆的切线,试求的取值范围.
如图,在四棱锥P-ABCD中,PA底面ABCD,DAB为直角,AB‖CD,AD=CD=2AB,E、F分别为PC、CD的中点. (Ⅰ)试证:CD平面BEF; (Ⅱ)设PA=k·AB,且二面角E-BD-C的平面角大于,求k的取值范围.