已知正项数列中,,前n项和为,当时,有.(1)求数列的通项公式;(2)记是数列的前项和,若的等比中项,求.
(14分)定义:若函数对于其定义域内的某一数,有,则称是的一个不动点. 已知函数.(1)当,时,求函数的不动点;(2)若对任意的实数b,函数恒有两个不动点,求a的取值范围;(3)在(2)的条件下,若图象上两个点A、B的横坐标是函数的不动点,且A、B的中点C在函数的图象上,求b的最小值.(参考公式:的中点坐标为)
(14分) 是定义在R上的函数,对都有,且当时,。(1)求证:为奇函数;(2)求证:是R上的减函数;(3)求在上的最值。
( 14分)已知函数的部分图象如图2所示,(1)求的解析式;(2)求直线与函数图象的所有交点的坐标.
( 14分)已知二次函数的图象过点(0,-3),且的解集.(1)求的解析式;(2)求函数的最值.
( 12分)已知函数(1)求函数的最小正周期和单调增区间;(2)函数的图像可以由函数的图像经过怎样的变换得到?